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Accompanying Statement

Given some autonomous evolution equation set in a Banach

space %,

our present concern lies in setting up a correspond-

ing dynamical system on a metric space % C%, and then apply-

ing the Liapunov approach to obtain qualitative information

about the behavior of motions. Specifically, the results pre-

sented here are related to the following areas of difficulty in

application:

b)

e)

setting up nonlinear dynamical systems that are
not necessarily quasicontractive (Theorem 2.2),
locating positive invariant sets, with possibly
empty interior, by using a lower semicontinuous
Liapunov function V (Proposition 3.3),

estimating the derivative V along motions for

a lower semicontinuous function V (Theorem 3.4),
using l.s.c. Liapunov functions to assure pre-
compactness of positive orbits (Theorem 3.4 with
Propasitron 3.5);

using l.s.c. Lipaunov functions with the Invariance

Principle (Theorem 3.6).
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ABSTRACT

This paper presents several results pertaining to the use
of lower semicontinuous Liapunov functions in the analysis of
autonomous abstract evolution equations. Such functions can be
ucseful in setting up a nonlinear dynamical system that need not
satisfy any exponential estimate, as well as in locating positive
invariant sets of the resulting dynamical system. Other results
concern the computation of the derivative of a lower semicontin-
uous Liapunov function, the use of such a function to assure pre-
compactness of positive orbits, and a version of the Invariance
Principle that is valid for lower semicontinuous Liapunov func-

tions.
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1. Introduction

Given some autonomous evolution equation set in a Banach
space 4, our present concern lies in setting up a correspond-
ing dynamical system on a metric space 2 C%, and then apply-
ing the Liapunov approach to obtain gqualitative information
about the behavior of motions. Specifically, the results pre-
sented here are related to the following areas of difficulty in

applications:

a) setting up nonlinear dynamical systems that are
not necessarily quasicontractive (Theorem 2.2),

b) locating positive invariant sets, with possibly
empty interior, by using a lower semicontinuous
Liapunov function V (Proposition 3.3),

c) estimating the derivative V along motions for
a lower semicontinuous function V (Theorem 3.4),

d) wusing l.s.c. Liapunov functions to assure pre-
compactness of positive orbits (Theorem 3.4 with

Proposition 3.5),

(9]

using l.s.c. Liapunov functions with the Invariance

Principle (Theorem 3.6).

We take this opportunity to define much of our notation

- 5 + .
and terminology. The symbols 4 and 4 denote the real line




2

(==,») and nonnegative real line [0,»), respectively, while
4# represents the extended real line [-»,»] with + «» con-
sidered as points, == < a < @ for every o€ H .

NS ) 3+ . > 2 .
Definition 1.1: A mapping u:4 x 2 > 2, @ a metric space, is
a dynamical system on « if the family {u(t, )} ,o is a Co-
semigroup of continuous operators on %; equivalently, if
u(0,x) = x, ult,ul(r,x) = u(t+t,x), ult,*): L+ 2 is continuous,

+ ! . : !
and u{-,x): % -+ 4 is continuous {right-continuous at t = 0)

e ,
for all .t e H , x €.

As every dynamical system is equivalent to a C,-semigroup
of continuous operators, the theory of C,-semigroups provides a
means of relating autonomous abstract evolution equations with
cdynamical systems; for linear dynamical systems, the complete
relationship is defined by the Hille-Phillips-Yosida Theorem [10].
For nonlinear C,-semigroups, the connection with evolution equa-
tions is less well established [4]; most available results are
restricted to the "quasicontractive" case (4], a restriction that
is often but not always met, even when % = 5{“. In Theorem 2.2
we describe a means of relaxing this restriction by determining

a class of positive invariant sets in the process of setting up

the dynamical system.

Definition 1.2: For u a dynamical system on a metric space %




+ : 5
and x € £, the mapping u(+,x): # + 42 is the motion

originating at x, the set Y(x) = égo w(t,x) 1is the positive
orbit of the motion, and Q(x) = TC% (ClthJT u(t,x)) 1is the

(possibly empty) positive limit set of the motion; equivalently,

v € Q(x) if there exists a sequence {tn}n=l,2,... such that
t, > and uft ,x) *y as n > «. Aset ¥ C & is positiye

invariant under u if x € % implies that Y(x)C¥ ; ¥ is

invariant under u if there exists a mapping v:# x%¥ -+ &
such that v(0,x) = x and v(t+s,x) = u(t,v(s,x)) for all

o -
XE ¥, tE€E AR, s€AH.

It is apparent that every invariant set is positive invariant,
and we note that the closure of a positive invariant set is it-
self positive invariant. The positive limit set Q(x) is direct-
ly related to the asymptotic behavior of the motion wu(:,x) as
t »» 1if ~(x) 1s precompact. The well known Invariance Prin-
ciple [5, 11, 14) provides a very useful means of locating {Q(x)

when a suitable Liapunov function is available.

Definition 1.3: Let u be a dynamical system on a metric space

4, and let V:%~>& be lower semicontinuous. V 1is a l.s.c.

Liapunov function for u on a subset ¥ if V(%) < 0 for every

x ¢ %, where V:Z2-+% is defined by
V(x) = lim inf %—(V(u(t,x)) - vix)] if |V(X)] < =,
t 0
Vi) =0 if V(x) =4 ®, V(x) =1 if V(x) = - =,




In applications, the computation of V often poses
severe difficulties, and few general results are known [22, 23].
Theorem 3.4 provides a very simple and unrestricted means of

obtaining a lower bound for -V.

Liapunov functions are usually defined to be continuous,
and continuity of V 1is essential in most versions of the
Invariance Principle [5, 11, 14]; however, with Dafermos (6],
we believe that l.s.c. Liapunov functions may be useful in es-
tablishing precompactness of positive orbits in certain problems,
and such functions appear to be useful for other purposes as
well [7]. Here we suggest their usefulness in determining
positive invariant sets with possibly empty interior; moreover,
by modifying an idea of Ball [l1], we obtain in Theorem 3.6 a
version of the Invariance Principle that is valid for 1l.s.c.
Liapunov functions and general dynamical systems, thereby ex-

tending an earlier result of Dafermos [6, 7].




2. Generated Dynamical Systems

If W@ x X + & is a linear dynamical system, < a
Banach space, it 1is well known that there exists a closed
linear and densely defined operator A: (22(dA) C 2) + 4 such
that( for every X, € /(A), the motion u(-,xo) is the

unigue strong solution of the linear evolution equation

x(t) = Ax(t) Vt € 4%,
(1)
%{0) = % € Z(n)
Furthermore, for all A € (O,Xo), some Ao > 0,
£(I-AA) = ¢ and I - AA admits a continuous inverse Jk
such that J?x i ash A S0 for m=lp2, o s and Ji/nx + u(t,x)

)

: 3 ; +
as n » «, uniformly on compact t-intervals in % , for every

x € 2 [13]. Therefore, it is reasonable to say that u is
"generated" through the product formula u(t,x) = lim Jz/nx 131
n-=»

Many analogous results have been obtained for the nonlinear
case as well. Crandall and Liggett (4] have shown that if a
(possibly multivalued) operator A: (2(A) C @) » 4B, % a

Banach space, is such that #(I-)\A) D Cl_, Z(A) for all

4
€ (0,),) and wI - A 1is accretive (in terms of some equiva-

lent norm l'-l|e) for some w € %, then a dynamical system

is generated on % = C;” & (A) by the same product formula as
' +

in the linear case. Moreover, u: # x 2 + X is |[|-]|]| -quasi-




contractive, in the sense that e “Tu(t,.): @ » 2 is |- ]fg-con-

1 it
tractive for every t € &# . It also has been shown that the

+

motion u(-,xo):1% +~ 42 provides the (unique) strong solution

of the evolution equation
x(t) € Ax(t) a.e. t e @,

(2)
x(0)Y = x. € 2(AY,
(@]

for every Xo such that a strong solution does exist. A num-
ber of additional conditions, sufficient for the existence of
strong solutions, are also known; e.g., if A 1is closed and

4 1is reflexive, or if A 1is closed and u(-,xo) is known to
be strongly differentiable a.e. on @ [4,17]. Although this
is a very powerful result, it refers only to dynamical systems

that are ||- -quasicontractive, due to the assumed

IR
!}-]}e~accretiveness of wI - A. Every linear dynamical system
is of this type, but many nonlinear dynamical systems do not
possess the quasicontractive property. It appears that major
improvements on the results of [4,17] must involve relaxation
(probably localization) of the accretiveness condition; for
further discussion of this point, see [15].

In our intended applications, it is only some known evolu-

tion equation that will be explicitly available for computations,

and therefore we are concerned here with a dynamical system that




is, in some sense, directly related to a known evolution equa-
tion. We wish to make this idea precise, but we do not want

to restrict our considerations to quasicontractive dynamical
systems. To this end, we note that both the foregoing discussion
and recent results on product formulas [3,15] strongly suggest
that a dynamical system related to an evolution equation ought

to be expressible as a product formula involving the (known)
operator A appearing in the evolution equation. This conjec-
ture motivates the following definition.

Fr o >+ , v .
Definition 2.tk Let' us x @+ 4 be a dynamical system on

b ) i i
a metric space “#. Let there exist a family {JA}AG[O,kO)'

> @ of continuous operators J\: A ~ 2 such that

g ;
(1) J?x + ¥ as A S0y n= 1,20.00., for every x € 9,

o y X ¥ _+
(1) i Jg/nx = u(t,x) exists for all x€ %, t € @,
n -rw

converging uniformly on compact t-intervals.

Then u is said to be generated by a product formula.

In applications it is usual that J, = (I—\A)—l, where
A: (Z(A)C 4) » 4P may be multivalued with % a Banach space,
£ (I-)\A) D 42 = Cy%_/(A), and %zlx,y) - ‘]X-Y,L% . We shall

then say that "A generates u" on the metric space Z. As we

do not wish to be restricted to the quasicontractive case, we




do not insist that A satisfy any (uniform)accretiveness con-
dition. For example, the following proposition shows that a
Liapunov approach can be combined with the Crandall-Liggett
theory [4] to set up a class of generated dynamical systems
that may not be (uniformly) quasiconstractive in terms of any

equivalent norm.

Theorem 2.2: For &% a Banach space, consider a (possibly

multivalued) A: (Z(A) C 4) » ¥, a lower semicontinuous V:%4 > X

with V{(x) > -» for every x ¢ &, and a < « such that the

set _%} = {x € B|V(x) < a} C Clﬁj/(A). Let there exist an equiva-
lent norm }l-!lq and w, A\ € #, A, >0, such that for all
€ (0,2,

(i) #(I-\A) D '{ﬁ'
(ii) WV(x) < V(x-\Ay) for all x € &(a), y € Ax, such
that x - Ay € @& 7
(1i1) || (1+2a@) (x=x) = A(y-y) || 2 1= = x}], for all

A

% X € Zﬂ M(AaY, ¥ € Bx, y € ax.

e A is the maximal restriction of A to ;NAQ) - 3@ N 24,

)/
then A generates a dynamical system u on the (complete)

- 1 oy = G 3 = - . -
metric space % <2Lﬂ_/(Aa) with %2(x,y) = || % y[{w, more
over, V is a l.s.¢. Liapunoy function for u on 3?, the
estimate ||u(t,x) - u(t,x)l!( < ewtllx - ylld applies for all

2t ; s yi 2 : .
b A € X, and %;ﬂf? is positive invariant for each




T, in addition, CL¥I/(A) = B = H(I-)A) for all suffi-

ciently small X > 0, e §g<w Clqlg%Au) =4 for some g € %, and
o
suitable !!'l;xr Ko(a) > 0, and w(a) < @ exist for every

finite a > .y then A generates a dynamical system on 4,

V is a l.s.c. Liapunov function on %, CL»JTAu) and % = are

positive invariant for each finjte G, and the estimate
Mlu(e,x) - u(t,y)l]a < ew(a)tllx - y|]u applies for all

. o+ S
X,y € ClngAn), t e, for each finite @ > G
10 4

Proof: By condition (iii), I - A is ||-]|]|_ -accretive.
e A

a

Condition (ii) implies that x € ¥ when x € 2(aA), y € Ax,

(6

and x - \y € ¥ ; hence, by (i), \K(I—KAX) D) %\. Ast 'V s

(
X

H'/(A)7

hence, Clﬁ;)(gy)t',@‘Li,%(I—AAa), and A! meets all conditions

lower semicontinuous, %, 1s a closed subset of Cl

of Theorem I of [4]. It follows that (I—XA") has a continuous in-

verse J, (meeting all conditions of Definition 2.1) and the pro-

)1

duct formula  u(E,.xX) = Lim (L = % A%)_n x leads to a dynamical
n-+o
system u: 4 x 4 > 2 such that ||u(t,x) - u(t,y) || < e“t‘lx-yll

a

a
+ :
4 [4]. 1In order to show that V 1is a

for all %,y €&, tes
Liapunov function for u on %, we note that (ii) implies that
Vi(d,x) < Vix) for x € Z and, therefore, J,x €@ As ¥ is

lower semicontinuous, V(u(t,x)) < lim inf V(JZ/nx) = Yiix) =Zor
n > o

t >0 and x € 4, and we conclude that V(x) < 0 for every
x € 4. By the same reasoning, we see that ¥, N % 1is positive

invariant for each 8 < a.




10.
Finally, we note that if Cl(/jf/(A) = % = H (I-)n) for
all sufficiently small A > 0, and if suitable [l-r[q, A (a) >0,
(0]

wla) < «, exist for every finite a > a r Ssome « < «, then
e} o

the above conclusions hold on CIZ;J(AQ) for each finite o > &

o
Lf . }i<w C%gQWAa) = %, then each x €4 (resp. x € 2(a))
o
is in some C%ﬁﬁﬂAa) C.%& (resp. f?(Au)) for finite a > @
hence, the remaining conclusions follow and the proof is complete.
&
it /(A) is dense and V(x) =0, « > 0, then Theorem

2.2 and Theorem I of Crandall and Liggett [4] are equivalent;
A generates a {I']la—quasicontractive dynamical system on
€= % = % on Ehellotherihand, if Wu # 94, Theorem 2.2 provides
a constructive method for defining a restriction Aa that, by
Theorem 1 of [2], generates a II-]Ia-quasicontractive dynamical
system on #« = Clﬂi/(Au). However, the last part of Theorem 2.2
provides a true extension of Theorem I of [4] if w(a) =+ o as

= «; the resulting dynamical system on # need not be funiform-
ly) quasicontractive in terms of any equivalent norm. This

situation arises, for example, in certain problems in nuclear

reactor dynamics which motivated this result; the analyses of

{12,21] could be considerably simplified by the use of Theorem 2.2.

There are other uses to which Theorem 2.2 can be put, even
for generated dynamical systems that are quasicontractive. For

cxample, consider the nonlinear partial differential equation

- g




u )

. 2
d

%—t— Vin.E0 = S 5 yin,t) + £'{yn.£)), £ >0, 0 <n <1,

2 an

with boundary and initial data

ylo,£) = 0= glli,x} , & >0,
(4)
y(n,0) = x4(n) , 0 <n < 1.
Here f£'(5) = Ir £(§) with f£: % »# twice continuously

2

differentiable and £(0) = 0, sup f"(f£) = m < «, This is a
€y

slight generalization of a problem considered in a somewhat

different context in ([2].

In order to place (3),(4) in the form (2), let ©&x denote

the generalized derivative of a function x: [0,1] - %4, let
ﬂg denote the space of (equivalence classes of) functions x el/é
. . : : L& :
having n Lebesgue square integrable derivatives ¢'x, 1 =1,...,n,

and let 7" denote the space of continuous functions having

n continuous derivatives. In contrast with [2], we choose to

| view (3), (4) in the natural topology of ’50; hence, we consider

~

(2) with 4 = ¥, where
L = {x ¢ r.ofx(O) =0=x(1)}, |[{x]|~ = ma [x(n) |,
4 °i”£l
Z(A) = {x ¢ kf|02x € 2} p (5)
Ax(N) = 42x(n\ % graxingy, © <£n<<l, x € ().

i-Ilﬁili-II.llIIlIlIIIlIll.ll.l--------r~




12,

It is possible to show that “#(I-)A) = f.for all suf-
ficiently small A > 0, and that wI-A 1is accretive for
= m; hence, by Theorem I of [4] (equivalently, by our Theorem
2.2 with V(x) = 0), it follows that A generates a quasi-
contractive dynamical system u on ;; moreover, Theorem II
of [4] implies that u(-,xo) provides the unique strong solution
ot (2) for every xO € 2'(A) such that (2) has a strong solution.

Despite appearances, there is more information to be gained

from Theorem 2.2 if a suitable nontrivial function V 1is used.

A

Extending a function used in [2], we define V: % » 4 by

e 1L R i
! ‘ : 2 [ ~
Vix) = J (oxin)) dn = 2 flx(n))dn, x €% FLVZ )
0 Jo
(6)
Nzl = e ULy ('? ;, X & »é .

In [2] the corresponding dynamical system was set on

4 foJ in the topology induced by the natural norm of r.l; in

that context V was continuous. Here our dynamical system u

is described in the topology of ro and V: ¥ 4% is not con-
tinuous; however, as will follow from Proposition 3.5 in the

next section, V: ¢ -+ 4 is lower semicontinuous. Applying

the mean value theorem to f': #+> 4 we find that, for x € 2(A)

and X > 0,




13.
2 : 2 : 2
V(x=AAx) > V(x) + A[2+A(m"=2m)] | [3"x(n)+£f' (x(n))]"dn .
0
Given any € > 0, € <1, it follows that there exists
\ @ such that
O -
i .2 : 2
V{(x-XAax) > V(x) +Jk(l-ﬁ)f [a xn)+E "(x{m)) 1 an (7)
- 0
for all A€(0,X ), x ¢ _A(A). Applying Theorem 2.2 we now
o
find that V is a 1l.s.c. Liapunov function for u on
U . each set % = {xn¢ ¢ | V(x) < a} is positive invariant
i{:,/f‘ & g
and closed for x € #, and L)_&} = BNH l is positive in-
L& 4 i =
variant and dense (with empty interior). Noting that V(x) = «

for % €%, % a‘”é, we see by Definition 1.3 that V 1is a

A
l.s.c. Liapunov function for w on all of %

From Theorem 2.2 we have obtained the separate conclusions

that V is a Liapunov function on |J %& = %’rnﬂé and that
uEA
¥ is positive invariant for each a € 4; actually,such con-

clusions are not independent, whether or not u 1is known to
be generated, and in the following section we point out this
fact for general dynamical systems. Other results in the follow-

ing section are needed in order to continue with our example.




3. Lower Semicontinuous Liapunov Functions

The useful property of a Liapunov function V
under relatively weak conditions,
nonincreasing along motions of the dynamical system;
property leads to many interesting conclusions.

obtain conditions sufficient to insure that V(uf(-,x))

increasing, we will need the following simple lemma.

14.

is that,
its value can be shown to be
this

In order to

is non-

(Although

this result pProbably is avajilable elsewhere, we have been un-

able to find it;

without a strengthened assumption that we make here.)

a similar lemma stated in [14] is not true

Lemma 3.1: Let £:([0,8)C&®) - ‘4 e defined on Fo 8y,
0 <B <w, with f£(0) < * and f(t) > -» for every t €[0,8),
and assume that
(i) £ is left lower semicontinuous on [0,R); i.e.,
1im inE £(t) > £(t ) for every t_«€ (0,B),
l s O O
A
o
(ii) the lower right derivative is nonpositive on [0,8); i.e.,
f(t)—f(to)
D+f(t) lim inf ~———~— < 0 for every t ¢ [0,8).
- o
= t-t
o o}
Then f 1is nonincreasing and differentiable almost everywhere

on compact subintervals of [0,8); moreover,

t

£{t) < £(0) * J D,f(s)ds Yt €10,8).

0
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Proof: Choosing some € > 0, define fg(t) = f(t) - et for
t € [0,8). Then fE is left lower semicontinuous with
E}(O) = £{ay - and fc(t) > =0, D+fx(t) < -¢, for every
t € [0,8). We claim that fc(t) < £(0) for every t €[0,8);
if not, left lower semicontinuity implies the existence of
: £, 10,8), koo (ty,B), such that £ (t) < £(0) for te [0,t,]

and £ _(t) > £(0) feor £ €(t However, this leads to

l’tz)'
the contradiction D+fg(tl) > 0; we conclude that fL(t) < £(0)

for every ¢t ¢[0,3) and, as > 0 was arbitrary, the same 1is

™

true for £. Replacing t =0 with t = y €(0,8) and repeat-
ing this argument, we find that £(t) < £(y) for all t €[y,B)

and all Yy €[0,B); hence, £ is nonincreasing and finite-valued
on [0,3). By a standard result of integration theory (see ([16],

Section 34.2) it follows that f 1is a.e. differentiable on

compact subsets of [0,£) (with derivative equal a.e. to D+f(t)),

and that
t
e e S R (0 ( D, f(s)ds
for every te€ [0,8). The proof is complete. ]

The following proposition is now obvious.
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Proposition 3.2: Let u: @' x @+ @ be a dynamical system

on a metric space &, and let V:Z -4 be a l.s.c. Liapunov
function for u on aset ¥C2Z. If x € ¥4, V(x)< » , and

nle,x) € ¢ Bar all bela g, 0 <

™w

< @, then Vi, x) ) is

nonincreasing and differentiable a.e. on compact subintervals

of [0,8); moreover,
t .
Vit x)) < Vix} + J V(u(s,x))ds VYt €[0,8)
0
_+ ARy . = —~
Proof: As u(-,x):H +&% is continuous and V: Z +~“4 is
lower semicontinuous, we define f(t) = V(u(t,x)) for ¢t €[0,R)
and note that all conclusions follow from Lemma 3.1. 5
From Proposition 3.2 it is apparent that V(u(-,x)) 1is
g ; + ; ; : z i
nonincreasing on % provided that Y(x) 1s contained within
a set % C & such that V 1is a Liapunov function on e 1 LE
V is not a Liapunov function on all of %, the problem now is
to e€nsure that vy(x) is contained in some % C%; this is

directly related to the problem of determining positive in-
variant sets. The following proposition is well known for con-
tinuous Liapunov functions; we prove it here for the lower semi-

continuous case.
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Proposition 3.3: Let u:# x Z+ @ be a dynamical system

on a metric space %, and let V:2 + A be a l.s.c. Liapunov

function for u on a disjoint component Sﬁ of the set

{x €4|V(x) < a} for some a < ». Then, for each B8 < a, the
set ¥, = {x e_%dlv(x) < B} 1is positive invariant and, for every
x € ¥,, V(u(-,x)) 1is nonincreasing and differentiable almost

everywhere on compact t-intervals; moreover,

t
: +
Via(t,x)) < V(x) + J V(u(s,x))ds Ve e,
0
Proof: 1In view of Proposition 3.2, it only remains to be shown
that ¢, is positive invariant. Let us consider x € >

noting that V(x) < 8 and, by the continuity

of the map u(*,x), V(u(:,x)) is lower semicontinuous on 7 AN
Either wu(t,x) remains in gﬁ on some finite interval [0,T]

or it does not. If not, the lower semicontinuity of V(u(.,x))
implies the existence of ¢ > 0 such that V(u(t,x)) > a for

all t ¢(0,8); therefore, we obtain the contradiction that

0 > V(x) = lim inf ¢ [V(u(t,x)) = V(x)] = + =.

Hence, V(u(t,x)) ¢ 3: for t €[0,T] for some T > 0; apply-

ing Proposition 3.2, we find that V(u(t,x)) < v(x) < 8

t ¢ [0,T]. Repeating this process, we find that either u(t,x)
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remains in %B for all ¢ EA%+ or there exists positive
r < « such that V(u(t,x)) < B for every t € [0,T) and
V(u(t,x)) > 8. By the lower semicontinuity of V(u(.,x)),
the latter case is impossible, and we have shown ¥%; to be
positive invariant. Applying Proposition 3.2, the proof is

complete. 1=

Often there are severe difficulties involved in computing
V when, as is usually the case in applications, the mapping
2t q . e 2
u:® x A +2 is not explicitly known [18,22,23]. For a
generated dynamical system, the following result provides a

means of obtaining at least a nonnegative lower bound for -V.

at - ;
Theorem 3.4: Let u:%# x 42+ @ be a generated dynamical

system on a metric space Z. Let there exist lower semicontin-
A - : ) ('_; 7, i ) (l_,. S
uous functions V:i4% > A4 and U: PR x D> X, V(x) > -» for
x ¢ &, such that

(1) V(3,x) < V(x) - MW(Q,T,x) Vxe Z, 1\ (0,2 ),

(ii) 0 < U(0,x) Nk e o,

a
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where AO > 0, o < @ and 3% is a disjoint component of

{x€Z|v(x) < a}. Then ¥ = {x € Y, 1v(x) < 8}

invariant for every 8 < a and V is a l.s.c. Liapunov

is positive

function on %, with V(x) < -U(0,x) for every x € ¢
0 = a

-

Proof; For x €4, % ¢ (O,XO), and: m =32 .. . we Sae

n
1 n » . X = m L m-1
E‘V(Jt/n X) Vix)] = m£1 [V(Jt/n %) V(Jt/n x) ]
n
1 N EL
= e i U(-,J )\)
B oty B E/n
¢ = inf (oS0, %) lw=1,2 n)
< inf {U(5, &/ ; 2 B
m
; T
S = anf {U(E'JT/m %310 < 1 S €y 0=l 250000t

Tt it

-0 ’ ; =
where J, x = x. Since u is generated and V 1is lower

semicontinuous,

g i

s - & Tipy 3 i n = ,
(V(u(t,x)) Vix)] < l:mwlﬂf t[V(Jt/n ) Vix)]

m

Erle 3
< inf {U(m'Jr/m

x}jo < < g, m=1,2,...},
m, T

and it follows that

-
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Q(X) = lim inf %[V(u(t,x}) = Efx))
t N\ 0
: . )
< -lim sup [inf {U(r—n-,J_[_/m x)|0 < T < t, m=1,2,...

- 00 Tl

Denoting the last term by -f(x), f:53—>5?, it follows
that for each ¢ > 0 there exists a sequence {t,,m } _ .
|l ) e
depending on x and ¢, such that my is a positive integer,

Ty, > T >0, 1, 0 as k » =, and

mk

Tk/m

Tk
f(x) + ¢ > lim inf U(—,J %)
= Tk 4w my k

If the sequence {m_ }, _ is bounded, then the lower semi-
: kKok=1,2,¢-%

.

continuity of U and the fact that J" x> x as A >.0, uniform-

A
Iy in m=l,.2,...,n  for finite n, together imply that

f(x) + £ > U(0,x). On the other hand, if the sequence

{mb}k*l 2 is not bounded, then there exists a subsequence
s e W AR

| ¥ i b {T 1 2 i ]
Lp’“p'p=l,2,... oL 1 k’mk‘k=l,2,... such that rp is a
positive integer, np + o as p > @, tp > tp+l > 0, tP = { &as
p + », and
t) n
£(x) + ¢ > lim inf u(-2,3 P X) .
- n t
P p p/n

P

P n .
Then, since Jt/n x - u(t,x) as n » =, uniformly on compact

t-intervals, it again follows from the lower semicontinuity of

PRI 13 FRP SIS
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U that f(x) + € >U(0,x). As x €2 and ¢ > 0 were
arbitrary, we obtain O(X) < -f(x) < -U(0,x) for every x €2Z.

We now have V(x) < -U(0,x) < 0 for every x € ¢ ;
— 16 4

therefore, V 1is a l.s.c. Liapunov function on %; and the

positive invariance of ¥,, 5 < a , follows from Proposition
s

3.3. The proof is complete. &

Remark: If a (possibly multivalued) generator A:(A(A)C 4) ~ %

"

in the sense of Section 2, where the Banach
ils

"generates u

space D = C¥ﬁ;/(A) and J\ = (I-)A) —, then condition
(1) 1is equivalent to
(L)' Vix=iy)} = W(x} > X0k, x),

for every x € Z(A), y e A%, X € (0,X ), such that x - \v€ &.

o
Remark: Since V 1is lower semicontinuous, each ,9g is closed
for © < «, although possibly empty; moreover, we note that

¢ . may be nonempty with empty interior.

As a somewhat trivial application of Theorem 3.2, let a

. ' + -
dynamical system wu: # x% »Z, 9 a Banach space, be generated

by a (possibly multivalued) operator A: (2'(A) C Q) + & such




which was begun in Section 2. With %, A, and V defined by

22

that wI - A is accretive for some w < 0 and 0 € #(A) .

Then defining V(x) = \!x—xell with x_ such that 0 © Ax,

application of Theorem 3.2 immediately yields V(%) < wV(x).

Of course, as the theory of C,-semigroups shows that u must

; wt | .
admit the estimate |[|u(t,x) - xe[} <e }}x—xe;} [AY . Ehis
estimate can be used in Definition 1.2 to achieve the same

conclusion.

As a more interesting application, consider the example

(5) and (6), we set X =% in Theorem 3.4 and note from (7)

A o

that the function U:#' x & - #, given by

i 2 ] = R .
U(r,x) =3(1-¢) J [0x%(n) + £ (x(n))]%an, xEXNN, ,
0 2
(8)
: = i gl
UlA,x) =« JgF % €F, 3¢ ‘12 P

satisfies conditions (i) and (ii) of Theorem 3.2 for 0 < X < A_{(g).
We shall show later that both U:f%+ x% > #® and V:iE » A
are lower semicontinuous; hence, recalling that € > 0 can be

chosen arbitrarily small, Theorem 3.4 implies that §(x) < = W(x)

for all x € Y¥ =% N#L , where
e 2
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il

i -
Wi(x) jj [32x(n) + f'x(n)]zdn, 3 E,b‘r\iﬁg ,

0
(9)

A

W(x) = » if x €%, x g,,é

The remaining conclusions of Theorem 3.4 were previously
obtained in Section 2 for this example. A new conclusion
can be reached by noting the result V(%) £ = §{x}  for

A~

x €% N ﬂé and applying Proposition 3.3, from which it follows

i o 2
that u(t,x) cannot remain in % f“(jfé = #72) on any open

Theorem 3.4 provides both an estimate for V and a family
»5i}:<1 of positive invariant sets. We note that if some
};, g < a, 1s bounded (or precompact), then the positive orbit
v(x) 1s bounded (or precompact) for every 6432; this suggests

the possibility of using Theorem 3.4 to assure precompactness

time interval in ,f+. We shall return to this example later.

of positive orbits, an essential requirement for useful applica-
tion of the Invariance Principle [8,11,18,20)]. Note that if

there exists a smaller metric space % C% such that some

@l, s < a4, 1s a %-bounded subset of % and the injection

Y + 1is compact, then Sa is 2-precompact and ¥y (X) is j
precompact for every x € g;. This idea is related to the pre- |
vious approaches of Hale [11l] and Slemrod [18] for assuring pre- 1

compactness of positive orbits, but it is much simpler in that

we do not make the assumption of [11] and [18] that wu, res-

; s+ ; :
tricted to 4 < %, is also a dynamical system on %. This ad-




vantage may be partially offset in applications by the practical
problem of assuring that V: @ +# is lower semicontinuous on
A e e

We now provide a sufficient condition for lower semicon-

tinuity that is related to our comments on orbital precompactness.
We note that if V: 2 > # meets the conditions of Theorem 3.4
as well as those of Proposition 3.5, with doj(x,y) = | Ix-y !

then %4 = Yy is Z-precompact.

Proposition 3.5: Let F:(Z(F] C »ﬁo)» 2 w‘o a Banach space,

and let 5 denote the set {x € Z(F) |F(x) < o}, o € A

Let _r!'] be a reflexive Banach space such that

(1) 4, C "’ﬂo and the injection 4, - %o is compact,

(ii) for every (finite) o € X4, e C-"l;l and # is

both ,-"ﬁl—bounded and "ﬁl—weakly closed.

Then F: (Zz(F) C :"IFO) +#% is lower-semicontinuous on 2/(F) and
/ 1is precompact in '}90 for every o € #. If /(F) 1is closed
9 4

in 9., '/“ is compact in %o.

Proof: Suppose that F 1is not lower semicontinuous; then there

sd s = ) b ~ /
cxists  x ¢ _/;F) , £ > 0, and a sequence {xn}n=l,2, Bukt 2(F)

% va = Q © 1 1 o = 8§ < F(: - >
such that X, * X, @as n =% and lim inf F (xn) 8 l"(.(o) 2€;

Nxo) ¢ », By choosing a subsequence, if necessary, we may
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assume that F(xn) < 8 + ¢ for every n; hence,
¢ . 7] . . ”
Rt el 2, . € . C 9&. Since %, is reflexive and )%+C

4 -bounded, we may assume (by choosing another subsegquence,

necessary) that {Xn}n—l 2 is also wa-weakly convergent
== ’ P
to some y_ (‘ﬂl [9]; in fact, yo(—.7%+€ since X _ is

weakly closed. As the injection (ﬂl-»‘ﬂ) is a compact linear

operator, it maps %H -weakly convergent sequences into ¥4

o
-strongly convergent sequences [9]; hence, B =N, 4+r .
This contradicts our assumption that xo & 3ﬂ+2, and implies

that F: (Z(F) C'%b) + ‘4 is lower semicontinuous.

As 7, is ‘ﬁl—bounded and the injection -%1 -J%O is
ccmpact, o A8 ‘zg—precompact. If 22(F) 1is closed in _%%,

lower semicontinuity of F implies that Aya is closed in fﬁg;

U

hence, ~# is compact and the proof is complete. (=]

Remark: As ﬁl is locally convex, a closed convex set in ‘”l

must be weakly closed [9]; hence, we can replace (ii) by the

simpler but more restrictive condition

(ii) "' for every (finite) a € 4, & is a convex
Y a

’ﬁl—bounded and .%&—closed subset of fﬁl.

As an application of Proposition 3.5, consider the function
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v of (6) defined on the Banach space % defined by (5). We

note that V = F +H, where H:Z -+ #is continuous and F: ¢ %

s defined by

Yeibs

I o E 1
F(x) = J (ax(n)) ~dn, x % N ﬁ?_ .
0
. 4 L
B(x) =« 1if xe %, x ¢ 12
Defining ¥ = {x € ¥|F(x) < al, « €4, and defining a Hilbert

Q

space ﬂl to be the set K'fﬂ,ﬂé equipped with the natural

norm of Wé, we see that the injection 'ﬂl->?f is compact,

‘AL is reflexive, and ¥ 1is a closed convex bounded subset of
= 1€ 7
) for every a € #. Hence, by Proposition 3.5 with condition

(iiy', F1 % + 17 is lower semicontinuous and \93 is compact
in - E. e follows that, as claimed, V: & R also is lower
semicontinuous. Moreover, if f: % > # 1is such that there

exist «,8 € # for which {x g'iﬂv(x) < Bl € 1% € gﬁF(x) £ als

then % C 5 and @G is compact; consequently, the positive

2 (
» L b

orbit y(x) 1is precompact for every x € ¥,

s A 5 :
In a similar manner we can show that W:% » 4, given

by (9), is lower semicontinuous. We note that W = FH, where

~ A
i

H: % + ¢ is continuous and F: % + 4 is defined by




77

|
kg
]

~ l ~
e zf (2%x(m2an , x @ N 2
0

2

wm 1f €% , ¢ >

;(x)

Defining a Hilbert space ,@a to be the set }7(\”2 equipped
with the natural norm of 5/% , the argument made above again
applies, and ;:fg'+ 95 is lower semicontinuous; it follows

that w:‘£'+ f;. is lower semicontinuous. Moreover, since

U= (l-¢)W and € < 1, it follows that u: #* X.Q’+ f;

given by (8) is also lower semicontinuous, as was previously
claimed.

In combination with a result such as Proposition 3.5,
Theorem 3.4 provides a means of assuring precompactness of
positive orbits; hence, the Invariance Principle is made avail-
able for the study of positive limit sets and asymptotic be-
havior of motions. The usual form of the Invariance Principle
is given by (a) of Theorem 3.6 below, and its proof is well
known [5,11,14]. This form of the Invariance Principle requires
a continuous Liapunov function, which seems unfortunate since
a l.s.c. Liapunov function, capable of showing precompactness
of positive orbits, will not be continuous unless % is a com-
pact metric space; hence, a second (continuous) Liapunov function
must be found, and Liapunov functions often are very difficult

to find. This disadvantage led Dafermos [6,7] to an extension

of the Invariance Principle which employs finite-valued l.s.c.
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Liapunov functions; unfortunately, his extension applies to only
a very special class of dynamical systems, wherein every motion
is known to be stable a-priori. A more generally useful exten-
sion seems to be provided by our result (b) of Theorem 3.6 below.
Related to an idea used by Ball [1l] in yet another extension of
the Invariance Principle, result (b) of Theorem 3.6 extends the
Invariance Principle to l.s.c. Liapunov functions and general
dynamical systems. Rather than requiring knowledge of Y
as in (a), result (b) requires only an explicitly known lower
semicontinuous and nonnegative lower bound for —V, such as the

estimate U(0N,x) provided by Theorem 3.4.

o+ ‘
Theorem 3.6: Let u:# x 4 + % be a dynamical system on a

metric space %, and let V:Z-+% be a l.s.c. Liapunov function

for W on a set ¥ CZ such that O(X) < =W(x) < 0 for

all x €%, where W:(¥$CZ) » 4 is lower semicontinuous on

& C;y,&'and Viy) > -» for all y € ¥. If y(x) C¥, then
2 (%) C«lﬂ} where #' is the largest positive invariant subset
of
(a) 'll = {z € fz}ﬁ(z) = 0} if V is continuous
(in fact, (x)C.#"N v'1@) for some geX),
or

(b) 12 = {z € Y|W(z) = 0} if V is only lower

semicontinuous.
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If, in addition, %2 is complete and Yy(x) is precompact,

Q@
then u(t,x) > # as t + ®, where _# 1is the largest invariant

subset of _ll if V is continuous, or of le i s ey

lower semicontinuous.

Proof: It is well known that Q(x) is closed and positive in-

variant [11,14]. If 2 is complete and Y(x) is precompact,
then Q(x) 1is nonempty, compact, connected, and invariant;
moreover, u(t,x) » Q(x) as t -» o, Assuming that vy(x) C 9,
we have O(x) C C¥9y(x) (@ ia If vy(x) 1is not precompact {(x)
may be empty, in which case the theorem is obviously true but
vacuous; hence, we will assume that &(x) 1is nonempty.

There now are several cases to be considered.

If v(u(t,x)) = » for all te #7, Definition 1.3 im-
plies that W(u(t,x))= 0 on ﬁ?+; hence, by the lower semi-
continuity and nonnegativity of W, W(z) = 0 for every z € Q(x)

and result (b) applies.

Ef V(0 = =« but Viu(E*rx)) < «  for some Et* > U;
we may replace x by x* = u(t*,x) and note that Q(x*) = Q(x),
V(x*) < «; hence, the proof of (b) for this case can be embedded

in the proof for the following case.

If V(x) < », Proposition 3.2 shows that V(u(-,:-c)):"}t‘+ - &

s 4 ; s + R .
is nonincreasing as well as finite-valued on 4 . This implies
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that V(u(t,x)) » B8 < as t »+ «, where B = inf+ Vit x))
teA

[16]; as Cly(x) C.éi Q(x) 1is nonempty, and V(y) > -« for
every Yy (»éi lower semicontinuity of V implies § > ==,

If Vi< »f; is continuous, it follows from the definition of
0(x) (Definition 1.2) that V(z) = £ for every =z € Q(x);
furthermore, as §(x) 1is positive invariant, 0(2) = 0 for
every 2z € 2(x) and the well known result (a) follows. On
the other hand, if V is only lower semicontinuous, we note
as in the proof of Proposition 3.2 that V(u(-,x)): @ ~ R is

differentiable a.e. and
I 5
Viult,x)) = V(x) < ;{ Viuls,x)j)ds, tEeXR .
]

. . r +
Therefore, considering any sequence {t C A such

1
el O

that tq » © and u(tn,x) - 2z € Q(x) as n » «©, the uniqueness

of the limit £ implies that for any T > 0,

T

e

V(u(s+t ,X))ds > [V(u(t _+T,x)) - V(u(t_,x))] = 0 as n » =,
0 n = n n

As W 1is nonnegative and lower semicontinuous, we apply Fatou's

Lemma [16] to obtain

T a:
J W(u(s,z))ds < f [lim inf W(u(s,u(t_,x))]ds
0 DS o

T
lim inf J W(u(s+tn,x)ds
n -+ o 0

| A

T,
- lim j V(u(s+tn,x))ds =0

n-roe

| A
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Therefore, W(u(s,z)) =0 a.e. s € [0,T], and the lower semi-
continuity of W now implies that 0 = W(u(0,z)) = W(z); hence,

(x) C {z € ¥|W(z) = 0} and the proof of (b) is complete. &

For an application of Theorem 3.6 we return to the ex-

ample beqgun in Section 2, with %,A,V,W defined by (5), (6), (9).

A

As V 1is only lower semicontinuous on % and W is a lower

bound for -V only on the (positive invariant) set ¥ = z‘nyl,
we note that ¥ = % and
A, = {x€® | 3%x(n) + £'(x(n)) =0 a.e. nel0,1]}

{x e2(A)| Ax = 0} . l

Il

Hence, ‘12 consists solely of equilibria of the dynamical

A A

system u:# x ¢ -+%; as equilibria are invariant, # =_12.

t follows that, for x € ftfﬁ’f/é, Q(x) consists solely of

equilibria. IE £: %+ 1is sucht that

- % bt 2
4, Ctxegnayl] txnZan < o)
0

for some(finite) «o,B8 € #, where Y = {x e£|V(x) < a}, then

our earlier results imply that _‘9”'(1 is compact; hence, Y (x) 1is

precompact for every x € g’“ and u(t,x) » # ﬁ&’a (strongly in

%) as t » o, for every x ¢ ’f;('l. If equilibria are isolated
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A

in %, it then follows from connectedness of the positive limit

set 0(x) that Q(x) consists of exactly one equilibrium for

X € K&. The approach used here might have simplified considerably

the analysis of [2], which was performed (in a different space)

under stronger assumptions on f: % » 4.

We see that result (b) of Theorem 3.6 is not as strong
as result (a). Specifically, if V 1is not continuous, V may

not be constant on the positive limit set Q(x) of a motion

u(-,x); in fact, we may not even have V =zero on {(x) unless

-V is lower semicontinuous on ¥. In contrast, the extension

provided by Dafermos [6,7] for finite-valued l.s.c. Liapunov

H

unctions yields V zero on Q(x) without assuming
-V: 2 + XA +to be lower semicontinuous on ‘gg provided that

all motions of u are known to be stable a-priori; however,

this is a very strong proviso which does not hold in general for
our example. It would be extremely difficult to compare our ex-
tension with that of Ball (Theorems 2.2 and 2.3 of [l]), wherein
the assumptions on V are of a very different nature; we ask
the reader interested in such a comparison to consult that

paper [l]. Here we only mention that, in our example, the
function V defined by (6) violates an assumption of both Ball

{1} and Dafermos [6,7], as it is not finite-valued everywhere on
Z.

We emphasize that Theorem 3.6, like Propositions 3.2 and

3.3, applies to a general dynamical system (Definition 1.1);
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specifically, Theorem 3.6 does not assume the dynamical system
to be generated in the sense of Definition 2.1. At present, it
seems to be an open question as to whether or not all dynamical

systems are generated in the sense of Definition 2.1.

I wish to thank Professor E. F. Infante of Brown Univer-
sity for his interest and very useful suggestions during the

course of this work.
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